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We study the route to synchronization in two noisy, nonisochronous oscillators. Anomalous phase synchro-
nization arises if both oscillators differ in their respective value of nonisochronicity and it is characterized by
a strong detuning of the oscillator frequencies with the onset of coupling. Here we show that anomalous
synchronization, both in limit-cycle or chaotic oscillators, can considerably be enlarged under the influence of
asymmetrical coupling and noise. In these systems we describe a number of noise induced effects, such as an
inversion of the natural frequency difference and coupling induced desynchronization of two identical oscil-
lators. Our results can be explained in terms of a noisy particle in a tilted washboard potential.
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I. INTRODUCTION

Synchronization in interacting oscillators is one of the
most fundamental problems in nonlinear dynamics [1-4]. In
any real application the oscillators are necessarily nonidenti-
cal and vary in their system parameters. Synchronization
then arises as an interplay between the interaction and the
frequency mismatch of the two oscillators. Of special interest
is the phenomenon of phase synchronization in which cou-
pling can overcome the difference of natural frequencies and
the oscillators are mutually entrained to a common locking
frequency. Phase synchronization is an ubiquitous phenom-
enon and arises naturally in many areas of physics and natu-
ral systems. It has been observed in limit cycle and in chaotic
oscillators and it appears in coupled pairs of oscillators, as
well as in large ensembles of oscillators [2,5-9], and even in
two interacting populations of oscillators [10]. Biological ex-
amples of synchronization include synchronous flashing fire-
flies [11], firing of neurons [12,13] and oscillating population
numbers [9,14].

Usually the introduction of coupling simply leads to syn-
chronization among the oscillators. However coupling may
also give rise to different effects including oscillation death
[8,15,16] and inhibition of synchronization [17,18]. Re-
cently, a new route to phase synchronization has been de-
scribed where small coupling firstly enlarges the natural fre-
quency difference between the oscillators, whereas phase
synchronization sets in only for larger values of coupling
strength [19,20]. This “anomalous” phase synchronization
has been demonstrated to arise naturally in a large class
of oscillator types and coupling topologies [19,20], including
two interacting spatially extended systems [21], and it has
experimentally been confirmed in two coupled Chua’s
circuits [22].

In this paper, we investigate anomalous synchronization
in two nonidentical oscillators under the influence of noise
and asymmetrical coupling. In the previous investigations it
was observed that anomalous synchronization is rather weak
in the common case that the oscillators have similar values
of nonisochronicity [19,20]. Here, we show that this restric-
tion does not hold any more if the coupling symmetry is
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broken. In this case we find that anomalous synchronization
is dominant even if the two oscillators have identical noniso-
chronicities.

Anomalous phase synchronization so far has only been
described in deterministic systems. In contrast, the interplay
between usual phase synchronization and stochasticity has
intensively been studied [3]. Most prominently noise is able
to induce phase slips and in this way can dephase otherwise
locked oscillators. However, even in this situation phase syn-
chronization can be defined in a statistical sense [3]. On the
other hand, it was shown that correlated noise may enhance
or promote the amount of synchrony between two oscillators
[23-25]. Here we investigate the interplay between anoma-
lous synchronization and noise. We find that in the presence
of noise anomalous effects are much enlarged and we dem-
onstrate a number of interesting noise induced phenomena in
nonisochronous oscillators. In particular, in such systems the
onset of coupling can lead to an inversion of the natural
frequency difference and it may even induce desynchroniza-
tion of two identical oscillators.

The outline of the paper is as follows: in Sec. II we re-
view some basic properties of phase synchronization in two
interacting oscillators. To illustrate the main ideas we study
the route to synchronization in three different model systems
(namely the Rossler system and an either chaotic or limit-
cycle predator-prey oscillator), each having its own distinct
frequency response to the onset of coupling. In Sec. III we
demonstrate that the striking different synchronization prop-
erties in these models can be explained in terms of simple
phase models. In Sec. IV we investigate the effects of asym-
metric coupling, in Sec. V we explore the influence of noise
and in Sec. VI we summarize our results. In the Appendix we
give an explanation for the observed nonisochronicity of our
models.

II. ANOMALOUS PHASE SYNCHRONIZATION

We study the synchronization in a pair of asymmetrically
coupled nonidentical oscillators

©2005 The American Physical Society
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Here, in the absence of coupling each oscillator, x; € R”,
follows its own dynamics X;=F(x;,b;). The oscillators are
assumed to be nonidentical which is achieved by assigning
to each oscillator i an independent value of its control
parameter b;. We always assume that each oscillator is
parameterized either on a limit cycle or on a regime
with phase coherent chaos. Accordingly every, possibly
chaotic, oscillator is characterized by a well defined natural
frequency w;. The oscillators are coupled with strength
€, where we explicitely allow for asymmetrical coupling,
€, # €. C=diag(c;,c,...,c,) is a diagonal matrix which in-
dicates the strength of the interaction in each component of
the state vector Xx;. Further, in Sec. V we also allow for the
possibility that both oscillators are under the influence of
uncorrelated noise, 7,(¢) taken from a Gaussian distribution
with zero mean and standard deviation o, i.e., (#7,(t)7,(s))
=028(t—s5) ;).

In general, the natural, unperturbed frequency of each
oscillator will be a function of its control parameter,
w;=w(b;), which leads to a natural frequency mismatch
Aw=w,—w, between the two oscillators. Synchronization
arises as an interplay between the interaction €; and the fre-
quency mismatch Aw. Thereby, with the onset of coupling
the frequency of each oscillator will be detuned,

Q;=Qe). 2)

Here, we denote the observed oscillator frequency in the
presence of coupling with a capital ,(e;) in contrast to
the natural frequency w; of the uncoupled oscillator, i.e.,
w;=0;(0). Phase synchronization refers to the fact that with
sufficient coupling strength €;,> €. the two oscillators rotate
with the same frequency, ;=0,.

It is long known that phase synchronization arises natu-
rally in two interacting limit cycle systems [3], but it is also
possible in two coupled phase coherent chaotic oscillators by
maintaining chaotic amplitudes [5]. Take for example two
coupled Rossler systems [26]

X12=— b1,2Y1,2 —21,2

In the parameter range b;~1 each oscillator shows phase
coherent dynamics. Consequently a phase can easily be de-
fined in the chaotic systems [3,5]. In this paper, we always
estimate the phase as an angle in the (x,y)-phase plane, i.e.,
we measure the time averages x; and y; and define the phase
as the angle

0.1) = arctan®. y,’ (4)

X;—X;

which is further unwrapped from the interval [0---27] into
the real numbers, so that 6,(¢) is a time continuous function.
The rotation frequency is then given as the long time average

of phase velocity, ;= 6:(1).

The path to synchronization in system (3) is depicted in
Figs. 1(a) and 1(d). Both oscillators are diffusively coupled
in the y-variable with equal strength €, ,=€. Note, that this is
a specific system of type (1) with the restriction of symmet-
ric coupling, €, =€, and vanishing noise, o=0. Similar to [5]
we study a small parameter mismatch between the two os-
cillators of (by—b,)/b,=4%. As can be seen in Fig. 1(a)
despite the chaotic amplitudes the transition to the synchro-
nized state is very smooth. Both oscillators start out with a
natural frequency difference Aw=w,—w,. With the onset of
interaction both oscillator frequencies are detuned (2) and are
attracted towards each other. Finally, at the critical coupling
strength €.~0.04 they collide to a single frequency. This
process can be visualized through a plot of the frequency
difference AQ(€), which is a monotonically decreasing func-
tion of coupling strength [Fig. 1(d)]. When the coupling ex-
ceeds the critical value, €> €., the frequency difference dis-
appears AQ(e)=0 and the oscillators are synchronized in
phase [5].

The question arises whether the simple route to synchro-
nization as exemplified in Figs. 1(a) and 1(d) is general, e.g.,
whether the frequency disorder AQ(€) is always a monotoni-
cally decreasing function of coupling strength. To explore
this case we first study two interacting chaotic predator-prey
systems [9,14]
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Each model describes a three trophic food chain where the
basal species x; is consumed by the predator y; which itself is
preyed upon by the top predator z;. In the absence of inter-
specific interactions the dynamics is linearly expanded
around the steady state (x,,0,z,) with coefficients a, b; and
c. Predator-prey interactions are introduced via mass-action
terms with strength « and 8. Parameter values are taken as in
[9,14] (a=1,c¢=10,xy=1.5,2p=0.01,a=0.1,3=0.6). In this
parameter range the model shows phase coherent chaotic dy-
namics, where the trajectory rotates with nearly constant fre-
quency in the (x;,y;)-plane but with chaotic dynamics that
appear as irregular spikes in the top predator z;. This behav-
ior of the food web model is reminiscent to the Rossler sys-
tem (3) and therefore one might expect similar synchroniza-
tion properties in both systems.

In Figs. 1(b) and 1(e) we study the synchronization of the
two food web systems (5) which are interacting in the
y-variable with symmetrical coupling €;=€. Both oscillators
vary in the value of their respective consumer death rates b;,
where we have used exactly the same parameter mismatch as
in the two coupled Rossler systems. Despite the fact that
both, Rossler and food web systems, have very similar at-
tractor topology we find large differences in their response to
the interaction. In the two coupled food web models with
increasing coupling strength € the observed frequencies of
both oscillators are largely reduced [Fig. 1(b)], where the
detuning of frequencies is a nearly linear function of e. Fur-
thermore, the amount of frequency detuning is different for
both oscillators. In the range of small coupling strength this
effectively leads to an enlargement of the frequency differ-
ence AQ) with increasing €. Only for larger values of cou-
pling strength, €>0.03, the frequencies are attracted towards
each other, finally giving rise to phase synchronization. Thus,
whereas in the two coupled Rossler systems the onset of the
interaction leads to a monotonic decrease of AQ(e), in the
two food web models the frequency difference is first ampli-
fied, with a maximal decoherence for intermediate levels of
coupling.

This unusual increase of frequency difference with cou-
pling strength has been denoted as anomalous phase syn-
chronization [19,20]. In the two symmetrically coupled food
web models (5) the amount of anomalous synchronization,
measured as the maximal amplification of the natural fre-
quency difference, is relatively small. However, as will be
shown below, anomalous effects can be drastic enhanced.

As a third model example we investigate the synchroni-
zation in two limit-cycle predator-prey models [29]

. X122
X12=0aX1 Tk —a

X12Y1.2
9
1 + KX],2
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X12Y1.2

+€ - . 6
1+KX1’2 1,2(Y2,1 }’1,2) (6)

Via=—bioyiat+a
Here, x; denotes the prey and y; the predator species, a and b;
are the birth and death rates, K is the prey carrying capacity,
a the predation rate and « the half saturation constant of the
functional response (parameter values a=1, a=3, K=3, k
=1). For sufficient large values of enrichment K, the
predator-prey system (6) is well known to exhibit limit cycle
oscillations. The path to synchronization in the interacting
oscillators (€; ,=¢€) is shown in Figs. 1(c) and 1(f). Again the
observed frequencies ();(€) are nearly linearly detuned with
coupling strength, but now the frequencies are increasing
functions of e. Thus, in the coupled limit cycle models (6)
the onset of coupling has exactly the opposite effect as in the
two chaotic food web models (5). Phase synchronization,
however, sets in smooth and the shape of AQ(e) is compa-
rable to that of the Rossler system Fig. 1(d).

III. PHASE EQUATIONS

The numerical observations of the previous section can be
explained with the help of simple phase models, which de-
scribe the synchronization properties of system (1) in the
limit of weak interaction [2,6,16]

0,=w+el(0;-0)+ (1) Gj=12 i#)). (7)

Here, the state of each oscillator i is described solely in terms
of its phase ;. In the absence of coupling the phase is as-
sumed to rotate uniformly according to the oscillators natural

frequency, 6;=w,. The effects of coupling are represented by
the interaction function I'; which, in general, is a 27r-periodic
function of the phase difference, ¢=6,—6,. Further, in sys-
tem (7) also the possibility of additional additive noise 7, has
been taken into account.

This phase-description of two weakly interacting limit
cycle oscillators freely translates to the case of phase-
coherent chaotic oscillations. According to [5] the phase dy-
namics of a single autonomous chaotic oscillator can be de-

scribed as 6,=w;+F;(A,), where Fi(A;) accounts for the
dependence of the instantaneous observed frequency on the
chaotic amplitude of oscillation A(¢). For two coupled oscil-
lators this generalizes to [5]

éi =w;+F(A) + eiri(aj -6,). (8)

In practice it has been shown [5] that the chaotic force F;(A;)
can be considered as effective noise. In this approximation
the phase dynamics of the chaotic systems, Eq. (8), effec-
tively is reduced to that of two noisy oscillators, Eq. (7).
Therefore we can treat the synchronization of both, chaotic
and nonchaotic systems, in a similar way. For the moment,
however, we neglect the effects of noise and restrict the
analysis to the deterministic system.

The synchronization properties of system (7) are deter-
mined by the phase difference ¢=6,— 6,. Subtraction of both
equations in (7) leads to a single equation for the evolution
of ¢ [in the deterministic case, i.e., setting 7,(1)=0]
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In order to proceed the interaction function I';(¢b) has to
be specified. In general, it is possible to calculate the inter-
action function from the original system (1) [2]. However,
for most practical purposes it is more convenient to approxi-
mate I" by simple conceptional functions. Usually it is as-
sumed that the interaction disappears for ¢=0 when the two
oscillators are in an identical state, I';(0)=0. The simplest
2r-periodic function with this property is given by the sine-
function

I'i(¢) =sin(¢),

which provides a canonical description for the synchroniza-
tion of two oscillators (note that stability of the synchronized
solution requires that I'/(0) >0). Inserting this into Eq. (9)
and further assuming symmetrical coupling, €,=¢€,=¢€, we

(10)

obtain for the dynamics of the phase difference, ¢=Aw
—2esin(¢). To obtain the coupling modified frequency dif-
ference AQ)(e) we calculate the time-averaged “beating pe-
riod” T= (2)”(dg{>/ ¢) which can easily be integrated (see for
example [27]) and leads to the well known result for the
frequency difference, AQ=27/T, in two coupled phase os-
cillators (e<Aw/2)

AQ(€) = VAw® - 4€. (11)
On the other hand, by adding up both equations in (7) we
find that for the simple model (10) the mean frequency is not

affected by coupling, 0,+ 6,=w, + w,=const. Therefore, the
coupling modified frequency of each oscillator can be writ-
ten as

W)+ Wy

2

1
0, (e) = + EAQ(G). (12)
This dependence on coupling strength as described by Egs.
(I11) and (12) is plotted in Fig. 2(a). Due to the onset of

coupling the two observed frequencies are smoothly attracted

4 |
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FIG. 2. Path to synchroniza-
tion in two symmetrically coupled
nonisochronous phase oscillators
(15). Plotted are the observed fre-
quencies of the individual oscilla-
o f tors, ) 5(€), as a function of cou-
: pling strength € for various
combinations of nonisochronici-
ties ¢;,. Top [(a),(b),(c)]: usual
path to synchronization Ag=0;
middle [(d),(e),(f)]: anomalous de-
synchronization, Ag=2; bottom
[(g),(h),(i)]: anomalous synchroni-

zation enhancement, Ag=-2.
Natural frequencies are w,=1 and
0;=0.96.

0.01
€

0.02

towards each other according to the square root law (11),
while the mean frequency stays constant.

By comparison with Fig. 1(a) it becomes immediately ap-
parent that the simple phase model (10) gives an excellent
description for the path to synchronization in the two Rossler
systems (3). However, it fails to describe the linear detuning
for small € that is observed in the two investigated ecological
models [see Figs. 1(b) and 1(c)]. This is also evident from a
Taylor expansion of the frequencies Q,(€) (12)

Qa(e=w 2 —+0(e). (13)
’ T Aw
Here, the slope of Q,(e) as a function of € must always be
zero for small coupling, lim, ,o[d€);(€)/de]=0, which is in
contrast to the numerical observations in the two ecological
models.
The phase description can be improved by using more
realistic interaction functions. Developing I'(¢) into a Fou-
rier series, with the additional constraint that I'(0)=0, leads

in first order to the following generalization of the simple
phase model (10):

I':(¢) =sin(¢p) + g;(1 = cos ).

In this equation the parameter g; is known as the nonisoch-
ronicity of oscillation [2,19,20] and describes the amplitude
dependence of the rotation frequency (see Appendix). We
now investigate the mutual entrainment of two nonidentical
phase oscillators which are coupled according to (14)

91 = w; + €[sin(¢p) + g,(1 - cos ¢)],

(14)

92 = w, + &[sin(— @) + g,(1 —cos ¢P)]. (15)

Figure 2 shows the results of the numerical simulations of
system (15) for different parameter combinations of noniso-
chronicities g, ,, where again we first assume symmetrical
coupling strength €, =¢€,= €. Obviously, for nonvanishing val-
ues of ¢g; the onset of synchronization can be drastically
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FIG. 3. Anomalous synchronization in two symmetrically coupled nonisochronous phase oscillators (15). (a) Natural frequency mismatch
is fixed, Aw=0.04 and the difference of nonisochronicity varies in the range from Ag=2 to Ag=-2. (b) Difference in nonisochronicity is
fixed, Ag=1, and Aw is varied between Aw=0.05----0.05 from top to bottom.

modified. In all parameter combinations for large € the two
oscillators eventually become synchronized in phase. How-
ever, superimposed to this usual route to synchronization is a
frequency detuning in the range of small coupling. From Fig.
2 this detuning for each oscillator is strongly correlated to its
value g¢;.

As an explanation we follow the arguments in [19,20].
Assume that for small coupling levels, €< €, the oscillators
(15) are rotating nearly independently. After time averaging,
(sin ¢p)={(cos ¢p)=0, we are left with the following un-
coupled equations for the mean phase evolution

O,(€) = w; + gie+ O(€). (16)

From this expression (16) it is clear that in the range of
small coupling the frequencies ();(€) are linearly detuned,
where the slope is exactly given by the nonisochronicity in
each oscillator

dQ(e)

e (17)

q;=lim
e—0
Now recall that the oscillators differ in their respective
values of w; and g;. Subtracting both equation in (16) we
obtain for the difference of the observed frequencies up to
first order in e(Ag=¢g,—q;)
AQ(e) = Aw+ eAg + O(€). (18)
Thus, if Aw>0 the frequency difference AQ(€) is an in-
creasing function of coupling strength when Ag>0. This is
the origin of anomalous synchronization. In the reverse situ-
ation, when Ag<0 the frequency difference is reduced by
coupling, resulting in an anomalous enhancement of syn-
chronization.
These results, which are valid only in the range of small
coupling, are confirmed by an exact calculation in the whole

coupling range. Inserting the interaction function (14) into
(9) we find for the phase difference

d=Aw-€2sin ¢+ Ag(cos p—1)]. (19)

Then, in generalization to Eq. (11) after straightforward in-
tegration the mean frequency difference follows:

AQ(€) = VAW + 2eAwAg — 4€. (20)

In this expression, the synchronization characteristics are de-
termined by the product AwAq. If AwAg >0 then small cou-
pling tends to desynchronize the oscillators and we observe
anomalous phase desynchronization. In contrast, negative
values of AwAgq lead to an anomalous enhancement of syn-
chronization.

This is also demonstrated in Fig. 3(a) where the coupling
modified frequency difference A{)(€) of system (15) has
been plotted for the case of a positive frequency mismatch
Aw=0.04. If Ag>0 we observe anomalous desynchroniza-
tion whereas for Ag<<0 synchronization is enhanced. For
comparison, in Fig. 3(b) the difference in nonisochronicity is
held fixed, Ag=1, and AQ(e) is plotted for different values
of Aw. We find anomalous desynchronization for Aw>0,
whereas Aw<0 leads to enhanced synchronization.

We want to stress, that Eq. (17) provides a convenient
way to estimate the amount of nonisochronicity in any given
model, even when the dynamics are chaotic. The idea is sim-
ply to introduce interaction between two models and to mea-
sure the change of the rotation frequency as a function of
coupling strength, €);(€). The nonisochronicity is then esti-
mated as the linear response of the coupling modified fre-
quency, Eq. (17). Applied to Fig. 1, for example, we find that
the nonisochronicity of the chaotic food web model (5) is
negative (¢q,=-1.7+0.1,¢,=—1.43+£0.05), whereas in the
limit-cycle predator-prey model (6) the ¢; are positive
(q;=5+0.1,4,=4=%0.1). In comparison, in the Rossler sys-
tem (3) nonisochronicity is rather small (¢;=0.15+0.1,¢,
=0.1x0.1). As a result we estimate a positve mismatch of
nonisochronicity, Ag=0.27, for the chaotic food web model
(5), a large negative value Ag=-1 for the limit cycle model
(6), and a mismatch close to zero Ag=—0.05 for the Rssler
system (3). Now taking into account that in all three model
systems considered in Fig. 1 we have Aw>0 these results
provide an explanation for the strikingly different routes to
synchronization which are exhibited by these models.

IV. ANOMALOUS SYNCHRONIZATION WITH
ASYMMETRIC COUPLING

In the previous section we have discussed how anomalous
effects can arise when the two oscillators differ in their re-
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FIG. 4. Anomalous phase synchronization in two asymmetrically coupled oscillators. Plotted is the observed frequency difference AQ(e)
as a function of coupling strength e for different values of the asymmetry parameter y. (Left) Two coupled Réssler systems (3); (middle) two
coupled chaotic food web models (5); (right) two coupled limit-cycle oscillators (6). The results for symmetrical coupling y=0 are indicated

as thick lines (compare to Fig. 1).

spective value of nonisochronicity, g, ,. However, even in
systems with a large absolute value of nonisochronicity, such
as the two ecological models (6), the difference of nonisoch-
ronicity usually is relatively small, i.e., Ag/q;<<1. As a con-
sequence, anomalous effects are rather small in such sys-
tems. In the following we show that anomalous
synchronization appears even when the oscillators have
nearly identical nonisochronicity if the coupling between the
oscillators is asymmetric. Note that a perfect coupling sym-
metry, € =¢€,, between two interacting dynamic units must be
considered to be an exception. Instead, in real systems the
coupling strength usually will be different in both directions,
€, # €. Asymmetric coupling can arise for various reasons.
One extreme case is unidirectional coupling, where one os-
cillator is driving the other system but itself remains unper-
turbed [28]. However, also more moderate forms of coupling
asymmetry frequently arise, for example due to different size
or mass of the oscillators [21,34]. Consider again two oscil-
lators (15) which are coupled with strength

€,=€(l = )). (21)

Here the parameter y=(€,—¢€,)/ (€, +¢,) determines the cou-
pling asymmetry, —1 < y=< 1. The extreme cases y==+1 refer
to unidirectional coupling, whereas x=0 reduces to sym-
metrical coupling. In analogy to (19) we find for the phase
difference

d=Aw-€d2sin ¢+ Q(cos p—1)], (22)
with the effective parameter
Q:L:ﬂleq+2)(q. (23)

Here, we have used the notation e=(€,+¢,)/2 and
q=(q,+q>)/2. Interesting are the two limiting cases. If
€,=¢€, (symmetric coupling) then Q reduces to the difference
of nonisochronicities Q=Agq. In the other extreme of identi-
cal nonisochronicities g;=¢, the effective parameter is given
by Q=2Xq=qu. Therefore, nonvanishing values of the ef-
fective parameter Q, with the consequence of anomalous ef-
fects, can be achieved even if the two oscillators have iden-
tical nonisochronicities, Ag=0.

Proceeding as in the previous section the observed fre-
quency difference yields

AQ(e) = VAw? + 2eQAw - 4€, (24)

and by comparison with (20) anomalous enlargement arises
if the product QAw>0 and anomalous synchronization en-
hancement if QAw<<0. The synchronization threshold of the
asymmetrically coupled oscillators is given by

&= =20+ 07+ 4] s)

Obviously, €. is monotonously increasing with Q. If 0=0
this reduces to the well-known nonisochronous case
€,=Aw/2. For large values of the effective parameter,
0>1, the synchronization threshold grows linearly with
0, eCT AT“’Q, whereas for Q <—1 the threshold goes to zero,

€.~

c 20 ¢
In Fig. 4 we investigate the influence of coupling asym-

metry in the three model systems of Sec. II by calculating
AQ(e) for different values of the asymmetry parameter y. In
the Rossler system, changing the coupling asymmetry x has
not much influence on the path to synchronization because in
this system the absolute value of g is very small. In contrast,
in the two, chaotic or limit cycle, food web models noniso-
chronicity is much larger and by varying y we observe dras-
tic changes in the form of AQ(e). In fact, the path to syn-
chronization can be totally reversed from enhanced
synchronization to anomalous desynchronization. In the cha-
otic food web model a negative value of x is necessary to
achieve anomalous desynchronization, QAw>0, since in
this model the sign of the g; is negative. In contrast, in the
limit-cycle predator-prey model (6) nonisochronicity is posi-
tive, g;> 0, and anomalous desynchronization is achieved for
positive y, whereas negative y lead to anomalous enhance-
ment of synchrony.

As shown in Fig. 4 for y#0 the amount of anomalous
desynchronization can be very large. For example, in the two
ecological models for coupling € just smaller than the syn-
chronization threshold A{) can be several times as large as
the natural frequency difference Aw. Also the synchroniza-
tion threshold rises very fast with the coupling asymmetry y.
Indeed in the predator-prey model (6) for y>0.8 the thresh-
old becomes €.>0.05, which is about ten times as large as
the synchronization threshold of the symmetrically coupled
oscillators (see Fig. 1). To explain this strong increase of the
synchronization threshold, we roughly estimate the magni-
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FIG. 5. Anomalous inversion of the natural frequency difference
in two unidirectionally (x=1) coupled chaotic food web models (5).
Plotted is the observed frequency difference AQ)(€) as a function
of coupling strength e. Parameter values b;,=b,+0.5Ab with
byp=0.98 and Ab=0.04 (solid line), Ab=0.02 (dotted line), and
Ab=0.01 (dashed line). Even though Aw >0 the coupling modified
frequency difference can become negative, AQ <O0.

tude of the effective parameter Q. From Eq. (23) we know
that Q=2yq if Ag can be neglected. Since in the model (6)
we estimated g = 5, the effective parameter can be as large as
Q=~10x. Now, from Eq. (25) for large Q we have
€(0) = €.(0)0~€.(0)10x.

All these numerical observations are in perfect agreement
to our theory (24) and clearly demonstrate that anomalous
effects can strongly be enhanced in the presence of asym-
metrical coupling schemes. However, so far there remain two
basic restrictions. First, up to now anomalous effects essen-
tially depend on the fact that the two oscillators are noniden-
tical. Even though coupling is able to enlarge an existing
frequency difference, it is not possible in this way to desyn-
chronize two identical oscillators. This is obvious for ex-
ample from Eq. (25), which implies that for Aw=0 the syn-
chronization threshold disappears, €.=0. Secondly,
even though anomalous effects can considerably modify the
usual form of the function A{)(e), so far they cannot in prin-
ciple invert the sign of the natural frequency mismatch, i.e.,
if Aw>0 this implies that for all coupling values also
AQ(e)=0.

In the following we will show that these two restriction do
not apply in chaotic or noisy systems. Take for example, the
two interacting chaotic food web models (5) with an asym-
metry parameter y >0, i.e. for very strong synchronization
enhancement. In this case we find a small region with an
inversion of the frequency mismatch, AQ(e)<<0. In Fig.
4(b), for our usual parametrization this effect is very small
and can only be observed numerically. Therefore, in Fig. 5
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we have plotted AQ)(e) in the case of unidirectional coupling,
x=1, for different values of the parameter mismatch. Using
our standard parameters, Ab=0.04, we find enhanced syn-
chronization in agreement to (24). However, new effects ap-
pear for smaller values of Ab. Then the function AQ(e) with
increasing coupling at first is sharply reduced and for €> e,
the two oscillators are synchronized in phase AQ)=0. How-
ever, by increasing € even further, this region is followed by
a second desynchronization regime, which is characterized
by a negative sign of AQ).

We denote this unusual effect, that the frequency differ-
ence of the interacting oscillators has the opposite sign as
that of the uncoupled oscillators, as anomalous frequency
inversion. The effect arises only together with anomalous
synchronization enhancement (here xy>0), however not only
as in Fig. 5 for the extreme case of unidirectional coupling,
but also for more moderate coupling asymmetry. Further, the
effect is as stronger pronounced the more identical the two
oscillators are parameterized. In our simulations we find that
anomalous frequency inversion is restricted to chaotic sys-
tems and cannot be observed in deterministic limit cycle os-
cillators. In terms of our theory, based on deterministic phase
oscillators, this inversion of AQ) cannot be explained. How-
ever, recall that the phase reduction of a chaotic oscillator (8)
effectively leads to a noisy system. In the following we show
that anomalous frequency inversion naturally emerges after
the inclusion of noise into the phase models with nonisoch-
ronicity.

V. ANOMALOUS PHASE SYNCHRONIZATION IN THE
PRESENCE OF NOISE

In this section we investigate the interplay between
anomalous synchronization and additive white noise. To
these ends we introduce additive Gaussian noise 7, 5(1) of
strength o7 , into the phase model (7). Since the difference of
two Gaussian noises is again Gaussian the basic equation for
the phase difference (22) is modified to

d=Aw—€2sin ¢+ Q(cos p—1)]+ 5(r). (26)

Here #(¢) is uncorrelated Gaussian noise of strength 0'2=0'%
+03, i.e., () 7(s))=a28(t-s).

In the isochronous case Q=0 the influence of noise is well
known [3]. This is shown in Fig. 6(a) where we investigate
the synchronization arising in two isochronous phase oscil-
lators. Without noise A{)(€) is reduced according to the
square root scaling (11). Under the influence of noise the
observed frequency difference AQ (e, o) is still a monotoni-
cally decreasing function of coupling strength e, but can
never become zero due to noise induced phase slips. Thus,

0.04 0.04
0.02
S 002 g o

FIG. 6. Phase synchronization in the presence
of noise. Plotted is the frequency difference AQ)
of two coupled isochronous (¢;=0) phase oscilla-

002

-0.04

tors (7) with interaction (10) without noise,
=0, (dotted line) and with noise, o=0.15 (solid
line). (Left) AQ as a function of coupling
strength e(Aw=0.04). (Right) AQ as a function

0 .
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of the frequency mismatch Aw(e=0.02).
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FIG. 7. Anomalous synchronization in the presence of noise. Plotted is the frequency difference AL} in two asymmetrically coupled
nonisochronous phase oscillators (15) with Q=1(x=0.5,¢;=1) under the influence of additive Gaussian noise with strength o=0.15 (solid
lines). (Left) AQ as a function of coupling strength e for different values of Aw. Further plotted are results without noise o=0 (dotted lines).
(Right) AQ as a function of the natural frequency mismatch Aw for different values of e.

we observe a sigmoidal reduction of the frequency difference
with increase of €. Similar effects can be seen in a plot of the
observed frequency difference as a function of the natural
frequency difference, AQ(Aw) [see Fig. 6(b)]. Without
noise, for small [Aw| we observe a locking plateau in which
AQ=0. With the introduction of noise this curve is smoothed
out, however the plateau for small Aw is still visible.

Here now, we are interested in the influence of noise when
the oscillators have nonzero value of nonisochronicity, g;
# 0. This is depicted in Fig. 7, where the synchronization in
two asymmetrically coupled phase oscillators (15) is studied.
Both oscillators have identical nonisochronicity g, ,=1 and
the asymmetry parameter equals x=0.5 (by setting €,=3¢,)
so that the effective parameter Q=2¢gx=1. In Fig. 7a we plot
the coupling dependence of the frequency difference, AQ(e).
In the noiseless case (dotted lines) the results correspond to
Fig. 3(b), i.e., if Aw>0 we observe anomalous desynchro-
nization, whereas for Aw <0 synchronization is anomalously
enhanced. With the inclusion of noise of moderate strength,
0=0.15, these transitions are largely modified [Fig. 7(a),
solid lines]. Then, for positive frequency mismatch,
Aw=0.01, the anomalous effects are more pronounced and
the desynchronization is considerably enhanced. On the
other hand, if Aw=-0.01 with increase of coupling strength
the curve AQ)(€) crosses the x axis, giving rise to an anoma-
lous inversion of the natural frequency difference. Interesting
effects arise also when the oscillators are identical and the
natural frequency mismatch is zero, Aw=0. Without noise in
this case the oscillators remain synchronized for all coupling
levels, AQ(e)=0. However, as demonstrated in Fig. 7(a) un-
der the influence of noise small coupling is able to desyn-
chronize the two identical oscillators.

In Fig. 7(b) we plot AQ(Aw) for the two nonisochronous
oscillators (Q=1). Without coupling, €=0, the noise has no
effect and AQ=Aw. With the introduction of coupling a
locking plateau becomes visible. With increasing levels of
coupling strength the plateau becomes more pronounced,
however additionally, the location of the plateau is shifted
linearly with e. If Q>0 (as in Fig. 7) the plateau is shifted
towards negative values of Aw, whereas for negative Q the
plateau is shifted in the other direction (not plotted). A simi-
lar shift of the locking region has been described for deter-
ministic systems [20], but here we show that it also takes
place in noisy systems. This has the consequence that with
the inclusion of noise we can always find a natural frequency

mismatch, exactly in the middle of the noiseless locking re-
gion Aw,=€Q, for which the observed frequency difference
disappears, AQ(Aw,)=0. Usually one would expect that fre-
quency locking sets in for similar natural frequencies, i.e.,
Aw,=0. However, here we find that this is different for noisy
nonisochronous oscillators where frequency locking is initi-
ated for oscillators with very different natural frequencies
Aw,#0.

The anomalous inversion of the natural frequency mis-
match between the two noisy phase oscillators in Fig. 7(a) is
very similar to that which is observed in two asymmetrically
coupled chaotic food web models in Fig. 5. As mentioned
above, the phase reduction of two coupled chaotic oscillators
(8) always contains an effective noise due to the erratic in-
fluence of the chaotic amplitudes. This noise, together with
the nonisochronicity of the model and the asymmetry of cou-
pling, is able to invert the natural frequency mismatch simi-
lar to the behavior in the noisy phase models in Fig. 7. How-
ever, there are also differences in the frequency inversion in
the noisy phase model and the actual chaotic oscillators. Es-
pecially in Fig. 5 a synchronized plateau can be observed for
a finite range of the coupling parameter before the frequeny
inversion is achieved. This plateau, on the other hand, does
not appear in the noisy phase model results. The reasons for
this difference are partly explained by keeping in mind that
the phase reduction of a chaotic oscillator (8) is only an
approximation. Especially for different parameterization of
the two oscillators one would expect that the chaotic ampli-
tudes still play a role. This confirms with the fact that the
plateaus in Fig. 5 reduce in size when the frequency inver-
sion is large, so that for a large degree of frequency inversion
chaotic oscillators and noisy phase oscillators behave very
similar.

We want to stress that in the deterministic limit cycle
system (6) similar effects such as anomalous frequency in-
version or desynchronization of two identical oscillators are
not possible. However, with the addition of noise we are able
to induce similar routes to synchronization as exemplified in
Fig. 7. This is tested in Fig. 8, where we investigate a system
of two coupled limit-cycle models (6) with a moderate asym-
metrical coupling of y=0.75. In Fig. 8(a) we plot the time
evolution of the phase difference ¢(r) for different values of
coupling strength. We have adjusted a negative parameter
difference Ab<<0 so that the natural frequency mismatch is
negative Aw<<0. Without coupling, €=0, the phase differ-

ence is on average linearly decreasing with time, ($)=Awr.
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FIG. 8. Path to synchronization in two asymmetrically coupled food web models (6) in the presence of additive white noise. (Left) Phase
evolution ¢(r)/2 for different levels of coupling strength €=0, €=0.01, and €=0.1. Parameters x=0.75, Ab=-0.02, and o=0.005. (Right)
Frequency difference A€)(€) as a function of coupling strength. Parameter mismatch between both oscillators b; ,=0.98 % 0.5Ab with
Ab=-0.02, Ab=0, and Ab=0.02. Other parameters 0=0.01 and xy=1/3.

In this case the only effect of the noise is to give rise to small
fluctuations of ¢(r) around this linear decline. However, as
shown in Fig. 8a, unusual results appear when coupling is
switched on. For intermediate values of coupling strength,
€=0.01, the slope of the phase evolution becomes positive,
which clearly demonstrates the presence of anomalous fre-
quency inversion. Interestingly, the time course of ¢(f) is
composed from a succession of discrete jumps of 2. This is
an indication that the increase of the phase difference is con-
nected to noise induced phase slips (see below). Due to these
phase slips the phase difference ¢(f) on average is an in-
creasing function of time and the observed frequency differ-
ence AQ(e) becomes positive. Only for very large coupling
strength synchronization sets in again and the slope of ¢(r)
reduces to zero.

More systematically this behavior is explored in Fig. 8(b)
where the observed frequency difference is plotted as a func-
tion of coupling strength. Note, the qualitative similarity be-
tween Fig. 8(b) and the corresponding simulation of two
noisy phase oscillators Fig. 7. Clearly, if Ab<0O then we
observe anomalous frequency inversion and A{)(e) changes
sign for intermediate values of e. If Ab>0 we observe
anomalous desynchronization which is amplified in magni-
tude by the noise. Figure 8 also includes a simulation with
two identical oscillators, Ab=0. Without noise then the os-
cillators would always be perfectly synchronized in phase,
for all values of of the coupling strength €. However, in the
noisy system with the onset of coupling both identical oscil-
lators are rotating with nonidentical frequencies. Note, that
this desynchronization of two identical oscillators with the
onset of coupling requires a breaking of the exchange sym-
metry. Here, this symmetry breaking is caused by the asym-
metry of the interaction.

At this point one remark of caution is in order. Already in
the noiseless case, Fig. 4(c), we demonstrated that in asym-
metrically interacting oscillators, y # 0, the coupling thresh-
old easily can be magnified about one order of magnitude
compared to the case with symmetrical coupling. This has
the consequence that in our numerical simulations even for
very small parameter mismatch we are forced to explore re-
gions with large coupling strength. This is even more so the
case for noisy systems as shown for example in Fig. 8. At the
same time, in the limit of large y the system of two coupled

oscillators corresponds to an externally driven system, which
under sufficiently strong external forcing model (6) is well
known to be able to exhibit chaotic dynamics with many
complications such as multiple coexisting attractors [28]. In
fact, in our simulations of the predator-prey model (6) for
large values of y we observe coupling induced chaotic dy-
namics, and it is not clear if our basic assumption of phase
coherency is still valid. Even if the individual oscillators are
rotating with a constant well defined frequency, the presence
of chaotic dynamics easily can deform the phase portrait in
such a way that our measurement of the phase as an angle in
phase space, Eq. (4), does not apply any more. In the present
study, we have always taken care to stay in a dynamic regime
where the phase is well defined. However a naive use of
formula (4) without checking the actual trajectories easily
can give rise to spurious results.

In the following we provide an intuitive understanding of
these numerical results. For this we make use of the fact that
the evolution of the phase difference ¢ in Eq. (9) can be
described in terms of a 27-periodic potential V()

d=--Lvg), 27)

d¢o

with

V(¢)=—Aw¢—Jd¢[6zT2(— d)-eali(P]  (28)

up to an arbitrary integration constant. The dynamics of the
phase difference can be represented as that of an overdamped
particle in the tilted periodic potential (28) [3,31-33]. In this
picture, the effect of noise is to induce phase jumps between
neighboring minima in the potential. A nonvanishing value
of AQ corresponds to a directed transport (i.e., a finite par-
ticle current) in the potential.

Using our basic model (22) we can easily calculate the
potential (28) for the case of two asymmetrically coupled
nonisochronous oscillators (see Fig. 9)

V(ip)=—(Aw+€Q)p—€e(2cos p—Qsinp). (29)

Without coupling, €=0, the potential (29) is a tilted
straight line, V(¢)=—Awd, with a slope that is determined
by the natural frequency mismatch Aw. This tilt is respon-
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FIG. 9. Two different effects of coupling in nonisochronous os-
cillators. Plotted is the potential V(¢) (29) for three different levels
of coupling strength. No coupling (€=0): the tilt of the potential is
to the right. Intermediate coupling strength (€=0.03): the interac-
tion gives rise to a periodic modulation of the potential; the tilt of
the potential is still to the right. Strong coupling (e=0.1): the modu-
lation of the potential is enlarged, however the overall tilt has been
inverted to the left. Parameters (Aw=0.05;0=-1).

sible for the constant growth of the phase difference ¢ be-
tween the uncoupled oscillators. With the onset of coupling
the form of the potential (29) is modified in two different
ways. First, the interaction leads to a periodic modulation of
the potential, €(2 cos ¢—Q sin ¢), which is closely related to
the possibility of synchronization since it tends to lock the
phase difference into one of the arising local minima of
V(¢). On the other hand, if Q#0 an increase of coupling
also gives rise to a change in the overall tilt of the potential,
Aw+€Q (see Fig. 9). It is this secondary effect of coupling,
i.e. the tilting of the potential, which is responsible for the
emergence of anomalous effects. The mean slope of the po-
tential depends on a balance between the natural frequency
mismatch Aw and the term eQ. Without loss of generality
assume that Aw>0 so that for e=0 the tilt is to the right.
Then, if Q is positive, with increase of coupling the overall
tilt of the potential to the right is even enlarged. This leads to
anomalous desynchronization. On the other hand, if Q is
negative then with increasing coupling strength the overall
tilt is reduced, which corresponds to anomalous synchroni-
zation enhancement. For the specific coupling strength
€,=—Aw/Q the overall tilt becomes zero, so that AQ(e,)=0
(corresponding to the shift of the locking plateau w, in Fig.
7b). If the coupling strength is increased further, €> €, then
the overall tilt is inverted.

This inversion of the average slope of the potential is the
origin of the phenomenon of natural frequency inversion.
However, frequency inversion cannot arise in the determin-
istic system (29) because with increasing € necessarily also
the periodic modulation is switched on. This is expressed by
the relation €,<e,, which can easily be proven from the
synchronization threshold Eq. (25). This means that the syn-
chronization threshold €, of the noiseless system is always
smaller than the special coupling level €, where the tilt dis-
appears. Therefore, even though the overall tilt of the poten-
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tial eventually becomes negative, the phase difference ¢ first
becomes trapped in one of the local potential minima. Only
under stochastic influence the phase difference is able to
jump over the potential barrier and so that the negative tilt of
the potential can become effective.

VI. CONCLUSION

In this paper we have investigated the synchronization
between two nonisochronous oscillators. As we have shown,
compared to isochronous systems such oscillators show
marked differences in their response to the onset of coupling.
Most notably, nonisochronous oscillators are linearly de-
tuned in the presence of small coupling. Similar detuning has
often been reported in natural systems. For example, it is
known already for a long time that in real living oscillators,
such as in the mammalian intestine and heart, the cells form-
ing a tissue oscillate with frequencies that are different and
usually are larger than the frequencies of the uncoupled, iso-
lated cells [1,30]. If two nonisochronous oscillators are
coupled this linear detuning is superimposed upon the usual
coupling-induced attraction of the rotation frequencies. As a
consequence, the synchronization of two oscillators with
non-vanishing nonisochronicites can be intricate and
“anomalous effects” may arise where coupling is able to in-
crease, decrease, or even invert the natural frequency differ-
ence. Anomalous synchronization has been observed in a
large class of limit cycle and chaotic oscillators (e.g.,
predator-prey systems, Van-der-Pol oscillator, Rossler sys-
tem, Landau-Stuart systems, Chua-circuits etc.).

In the simplest case, the amount of anomalous synchroni-
zation depends on the difference in the nonisochronicity of
the two oscillators. However, even though many natural os-
cillators are characterized by nonvanishing values of noniso-
chronicity, the differences usually are rather small. Our nu-
merical studies in a large class of different systems indicate
that this is a general rule. This may be the reason why so far
anomalous effects have not been recognized very often.
Here, we have demonstrated that the situation very different
in the presence of asymmetrical couplings, where anomalous
effects are considerably enlarged. Many or most studies of
coupled oscillators are assuming only symmetrical interac-
tions. However, in any realistic system symmetric coupling
must be considered to be the exception. Coupling asymmetry
can arise for a large number of different reasons. One com-
mon example is a heterogeneity in the size or some other
extensive attribute of the oscillators, such as mass, capacity
or volume. In this case, even if the interaction is microscopi-
cally symmetric, the nonidentical oscillators effectively may
experience asymmetric forces [34]. Take for example a sys-
tem of two coupled predator-prey systems. Assume that the
interaction between the two population patches is through
diffusive dispersal of individuals, which means that it is sim-
ply determined by the density difference between the two
patches. In practice, the two patches will have different size.
Therefore, one migrating individual will make a different
contribution to the density of its new patch after migration.
As a consequence, even though the microscopic process of
diffusion is symmetric, the effective coupling to describe the
population densities depends on the two patch sizes and in
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general will be asymmetric. Similar arguments apply for a
large class of other systems. Take, for example, a pair of
coupled pendulums with different masses. Even though the
basic interaction for the exchange of momentum follows
Newton’s law of “actio=reactio,” the coupling function in
terms of velocities (and thus also frequencies) depends on
the mass ratio between the two pendulums.

A second focus of this study is the constructive interplay
between anomalous synchronization and noise. As we have
shown, with the introduction of noise anomalous effects usu-
ally are strongly amplified. The reason is that anomalous
effects increase with the coupling strength. However, without
noise for large coupling the oscillators are synchronized be-
fore anomalous effects can become effective. This is differ-
ent with the inclusion of noise because then the dynamics of
the interacting oscillators are not fully correlated even for
large coupling strength. This allows for strong anomalous
effects and can give rise to many unusual results. For ex-
ample, the frequency locking between two noisy oscillators
may set in for oscillators with a non-zero frequency mis-
match. Further, we have shown that under the influence of
noise coupling is able to desynchronize two identical oscil-
lators.

Taking into account that all major ingredients of this in-
vestigation, namely nonisochronicity, coupling asymmetry
and noise, are ubiquitous in natural systems, we argue that
the presented results should be of relevance for many appli-
cations. For example, anomalous synchronization allows for
the possibility of synchronization control. With a careful
choice of oscillator parameters or coupling direction anoma-
lous effects can be used to either enhance or inhibit the syn-
chronization between the oscillators. Therefore the effect is
of potential use for engineering applications, but should also
play a prominent role in living systems, where evolution may
have selected parameter sets in such a way as to support
biologically advantageous synchronization properties.
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APPENDIX: NONISOCHRONICITY AND SHEAR
OF PHASE FLOW

Here, we briefly comment on the origin for the strikingly
different values of ¢; in our model systems. As already men-
tioned before, the nonisochronicity g of an oscillator is a
measure for the change of its rotation frequency after a small
perturbation. Suppose the existence of a coordinate system
so that the state of the limit cycle system can be described in
terms of its phase 6(z) and amplitude r(z). Let w, denote the
natural frequency at the unperturbed amplitude r,. Without
loss of generality we set ro=1. If the oscillator is disturbed
to rotate with the new amplitude r# 1 then close to its
limit cycle the instantaneous frequency can be written as
o(r)=wy+q(1-r*) [2,19,20]. Here, the nonisochronicity
q is a measure for the shear of the phase flow close to the
limit cycle. Thus, the presence of nonisochronicity only be-
comes important when the oscillator is perturbed off its limit
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cycle either through the effects of noise, or as in our case,
through the interaction with other systems.

Assume now a system of two weakly coupled oscillators
(1). Tt is well known that the net effect of a very weak inter-
action, e<<e€,, results in an effecting damping of the dynam-
ics. Therefore, in the interacting systems the amplitudes on
average, are reduced to the smaller radius r*(e)=1-¢
[19,20]. If the phase flow close to the limit cycle has a shear
then this effective reduction in amplitude has the conse-
quence that with increasing e the coupling modified fre-
quency is detuned as (€)= w(r(€)) = wy+ €q, which corre-
sponds exactly to our previous result (16).

Most natural oscillators are characterized by positive val-
ues of g, which means that the oscillation frequency de-
creases with the amplitude r. Assume, for simplicity, a sys-
tem in which the absolute value of the velocity v of all
trajectories in phase space is constant. In such an oscillating
system w(r)=v/r with v=wyr,. Therefore, close to a sup-
posed limit cycle of radius ry=1 we have w(r)= wy+ wy(1
—r). Here, we have a positive shear because a rotation with
larger amplitude, r+dr, requires the trajectories to follow a
larger distance in phase space, which implies an increase of
the average rotation time, dT=r/Tdr.

The unusual large levels of nonisochronicity ¢;=4...5,
which are exhibited in the limit-cycle system (5), imply that
with an increase of amplitude the oscillations are drastically
slowed down. In the predator-prey system this is indeed the
case. To understand this we first note that the densities x and
y must always be positive. Therefore, larger oscillation am-
plitudes can only be expressed at the maxima of the cycle,
whereas during the minima the trajectories must be squeezed
onto the 0-axis. Thus, for large amplitudes the predator-prey
oscillations are nonuniform and in the phase plane are char-
acterized by trajectories that closely approach the x and y
axis. During these times of very small predatoror prey abun-
dance, the oscillators are slowed down, since the velocity v
is very small close to zero and very fast for large densities.
Therefore, if the amplitude of oscillation is reduced by the
interaction with other systems then the minimal density lev-
els become elevated and the bottleneck of slow velocities
close to zero is less severe. As a consequence, in the
predator-prey system the period can strongly increase with
the oscillation amplitude, which again implies a large value
of g.

In contrast, in the chaotic three trophic predator-prey
model, we observe large negative values of nonisochronicity.
These negative values of g imply that rotations with larger
amplitudes are accelerated. This can be explained due to the
chaotic folding in the three dimensional phase plane of this
model [14]. Recall, that the uniform rotation in this model
basically takes plane in the two lower trophic layers, i.e. in
the (x,y)-plane. Large amplitudes in the (x,y)-plane trigger a
strong but fast excursion in the z-variable, which resets the
trajectory to a new small amplitude in the (x,y)-plane (in this
way generating the chaotic folding of the phase flow). There-
fore, a large amplitude in the (x,y)-plane gives rise to a fast
oscillation, which finally results in the negative value of g;.
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